

$1^{\text {st }}$ Year Maths Revision
 NATURAL NUMBERS : Chapter 1

Natural numbers are counting numbers 1,2,3,4, \qquad
The capital letter \mathbf{N} is used to represent natural numbers.
Even natural numbers can be divided by 2 with NO remainder. 2,4,6,8,10

Odd natural numbers are:
1,3,5,7,9,11

Consecutive numbers are numbers that follow on in order or sequence.

Place value

$$
\begin{aligned}
37,924 & \text { 3--- ten thousands } \\
& \text { 7---thousands } \\
& 9 \text {--- hundreds } \\
& 2 \text {--- tens } \\
& 4 \text {--- units }
\end{aligned}
$$

FACTORS:

Factors are pairs of numbers that multiply to give you the number.
They divide into a number with NO remainder.
Factors of 36:
1,2,3,4,6,9,12,18,36

HCF : highest common factor
Factors of 18: $1,2,3, \underline{6}, 9,18$
$H C F=6$
Factors of 24: $1,2,3,4, \underline{6}, 8,12,24$
The HCF common to both 18 and 24 is 6

PRIME NUMBERS:

Prime numbers are numbers that only have 2 factors, itself and one.
Note: 1 is not a prime number

$$
2,3,5,7,11,13,17 \text { etc }
$$

MULTIPLES:

Counting up (adding on) in a given number
Multiples of 3: $3,6,9,12,18$
Multiples of 5: $\quad 5,10,15,20,25$
LCM: lowest common multiple
The smallest multiple common to both numbers
$4,8,12,16,24$
$6, \underline{12}, 18,24,30 \quad$ LCM $=12$

SQUARES/SQUARE ROOTS

4^{2} means 4×4 use x^{2} button on calculator.
4^{3} means $4 \times 4 \times 4$ use \times abutton on calculator.

Be familiar with the following numbers:
$2^{2}=4$
$8^{2}=64$
$3^{2}=9$
$9^{2}=81$
$4^{2}=16$
$10^{2}=100$
$5^{2}=25$
$11^{2}=121$
$6^{2}=36$
$12^{2}=144$
$7^{2}=49$
$13^{2}=169$

Perfect squares

When square root gives you a WHOLE number as the answer
$\sqrt{16}$ means what number multiplied by itself gives 16
$\sqrt{16}=4$
Use $\sqrt{ }$ button on the calculator.
$4,9,16,25$, are all square numbers as the square root of these numbers is a whole number

Order of operations

BIRDMAS

B--- Brackets
I--- indices/power
R----- roots
M ---multiplication order not important can \div or \times
D--- division
A--- addition order not important + or -
S--- subtraction
Sometimes see BEMDAS where the E stands for exponent

ROUNDING:

If number ends in 5 or more round UP
If number is less than 5 round DOWN

Significant figures:
$74,568 \rightarrow$ above 5 round up
4 significant figures 74,570
74,568
Above 5 round up to 600
3significant figures 74,600

74,568
5 so round up to the next thousand 2 significant figures 75,000

74,568
4/so round down
1 significant figure 70,000
$1^{\text {st }}$ Year Maths Revision
INTEGERS: Chapter 2

Integers are positive and negative WHOLE numbers
The letter \mathbf{Z} is used to represent integers
Symbols

$$
\begin{aligned}
& \text { < LESS than (points to the left) } \\
& >\text { GREATER than (points to the right) }
\end{aligned}
$$

Rules for ADDITION \& SUBTRACTION:

When the signs are the SAME ($2+$ or 2 -) KEEP the sign and ADD

$$
\begin{aligned}
& -2-4=-6 \\
& -3-5=-8 \\
& 2+6=8
\end{aligned}
$$

When the sign are DIFFERENT keep the sign of the BIGGER number and SUBTRACT

$$
\begin{aligned}
& -8+2=-6 \\
& 10-12=-2 \\
& 14-10=4
\end{aligned}
$$

Rules for MULTIPLiCATION \& DIVISION:

LIKE signs (same signs) give PLUS (+)

$$
\begin{aligned}
& -4 \times-4=16 \\
& -12 \times-2=24 \\
& \frac{-16}{-8}=2 \\
& 2 \times 4=8 \\
& \frac{4}{2}=2
\end{aligned}
$$

UNLIKE signs (different signs) give MINUS (-)

$$
\begin{aligned}
& -3 \times 5=-15 \\
& -2 \times 5=-10 \\
& \frac{-30}{10}=-3
\end{aligned}
$$

$1^{\text {st }}$ Year Maths Revision
FRACTIONS: Chapter 3
$\frac{2}{5} \quad \frac{\text { numerator }}{\text { denominator }}$

Equivalent fractions: fractions that all have the SAME value

What do the fractions in example 1 have in common?

Simplifying fractions:

$$
\frac{4}{16}=\frac{1}{4} \quad \text { divide above and below by } 4
$$

If a fraction cannot be simplified anymore it is said to be in it's SIMPLEST FORM

$$
\frac{16}{24}=\frac{8}{12}=\frac{2}{3}<\text { simplest form }
$$

Types of fractions:

Proper fractions--- fractions that are less than 1 eg, $\frac{1}{3}, \frac{1}{4}, \frac{1}{2}$
Improper fractions --- fraction that are greater than 1 eg. $\frac{8}{5}, \frac{5}{2}, 2 \frac{1}{4}$
Mixed numbers --- whole number and a fraction eg. $2 \frac{3}{4}$

Changing to an improper fraction:

$4 \frac{3}{4}=\frac{19}{4} \quad$ make 4 represent a fraction of itself $\frac{16}{4}+\frac{3}{4}=\frac{19}{4}$
$2 \frac{3}{5}=\frac{13}{5} \quad 2=\frac{10}{5} \quad \frac{10}{5}+\frac{3}{5}=\frac{13}{5}$

Changing to a mixed number:

$\frac{19}{4}$ divide 19 by $4=4$ and 3 left over

$$
\frac{19}{4}=4 \frac{3}{4}
$$

Comparing fractions:

Need to get the denominators to be the SAME

Remember what you do to the top you must also do to the bottom!!!!

Which is bigger $\frac{3}{5}$ or $\frac{3}{4}$??
Get LCM of 4 and $5 \quad L C M=20$
$\frac{3}{5}$

Multiply top and bottom by 4
$\frac{3 x 4}{5 x 4}$
$\frac{3 x 5}{4 x 5}$
$\frac{12}{20}$
Therefore $\frac{3}{4}$ is bigger than $\frac{3}{5}$

Finding a fraction of a number:

Multiply with the numerator
Divide with the denominator
use - button on calculator

Adding and Subtracting:

$\frac{4}{7}+\frac{2}{7}=\frac{6}{7}$
$\frac{6}{9}-\frac{2}{9}=\frac{4}{9}$
When the denominator is the SAME add or subtract the numerator
When the denominator is DIFFERENT use the LCM to get the denominators to be the same and then add or subtract
$\frac{3}{7}+\frac{1}{14} \quad$ LCM $=14$
$\frac{3 \times 2}{7 \times 2}=\frac{6}{14}$

$$
\frac{6}{14}+\frac{1}{14}=\frac{7}{14}
$$

When adding or subtracting mixed fractions turn into improper fractions (top heavy fractions) and use the above rules
$4 \frac{5}{6}+1 \frac{3}{4} \quad$ same as $\quad \frac{29}{6}+\frac{7}{4} \quad$ LCM $=12$

$$
\begin{gathered}
\frac{29 \times 2}{6 \times 2}+\frac{7 \times 3}{4 \times 3} \\
\frac{58}{12}+\frac{21}{12}=\frac{79}{12}=6 \frac{7}{12}
\end{gathered}
$$

Multiplying fractions:

Multiply top by top
Multiply bottom by bottom

$$
\frac{1}{2} \times \frac{3}{4}=\frac{3}{8}
$$

Dividing fractions:

Turn the fraction upside down and multiply

$$
\begin{gathered}
\frac{3}{4} \div \frac{1}{2} \\
\frac{3}{4} \times \frac{2}{1}=\frac{6}{4} \\
3 \div \frac{3}{5} \\
\frac{3}{1} \times \frac{5}{3}=\frac{15}{3}=5
\end{gathered}
$$

Throwing a dice, tossing a coin, spinning a spinner the answer that you get are called outcomes

Dice: outcomes $=1,2,3,4,5,6$
Coin: outcomes =heads or tails

If you throw a dice and toss a coin the outcomes are as follows $\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6, \mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6$

There are 12 different outcomes
2 outcomes for the coin and 6 for the dice
$2 \times 6=12$

This is the Fundamental Principle of Counting:

If one event has m possible outcomes and the second event has n possible outcomes, the two events have $m \times n$ possible outcomes

Examples:

If a boy has to choose a shirt, tie and jacket from 5 shirts, 3 ties and 4 jackets

He has $5 \times 3 \times 4=60$ different combinations
An early bird menu consists of 3 starters and 4 main courses. How many different 2 course meals can you have?
$3 \times 4=12$

The Probability Scale:

Is used to show how likely any event is to happen
Probability uses numbers to tell us how likely something is to happen

The probability scale goes from 0 to 1
The probability of an event that is impossible to happen is zero
The probability that an event is certain to happen is 1
The more likely an event is to happen the closer the probability is to 1

If there is a $50: 50$ chance, it is described as a even chance

You buy a lottery ticket and win the jackpot

You grow another nose

Events and outcomes:

Eg. Throwing a dice
The act of throwing a dice is called trial
The numbers you get 1,2,3, etc are called possible outcomes of the trial

The result you want (throw a 6) is called an event
If events have the same chance of happening, the events are said to be equally likely

Calculating probability:

For equally likely outcomes (something that has the same chance of happening)

Probability of an event $=\frac{\text { number of favourable outcomes }}{\text { number of possible outcomes }}$
*Note: a favourable outcome is an outcome that you want

Example:

In a pack of cards what is the probability of picking a Queen?
Favourable outcomes $=4$ (4 queens in a pack of cards)
Possible outcomes $=52$ (52 cards in a pack)
$P(E)=\frac{4}{52}$
*Note: for probability your answer will ALWAYS be a fraction or a decimal

Remember values can only be between 0 and 1

When we say 'pick a card at random' it means that every card in the pack has an equal chance of being chosen

Deck of cards:

Total number of cards in deck 52 (jokers NOT included!)
4 different suits:
2 red suits (26 cards)--- hearts (13 cards) \& diamonds (13cards)
2 black suits (26 cards) ---- spades(13 cards) \& clubs(13 cards)
Picture cards: 3 in each suit--- jack, king, queen
Aces(4 cards) card with the A --- one in each suit

Diamonds

King

Spades

Ace

Clubs

Queen

Hearts

Jack

Decimal Place Value Chart													
¢			n 号 0 0 0	은 $\frac{0}{0}$ $\frac{5}{3}$	$\stackrel{\cong}{\stackrel{\sim}{\square}}$	む		$\stackrel{\sim}{\stackrel{\sim}{ \pm}}$					
			3	6	8	4	-	2	6				

$$
\begin{array}{lll}
679.32815
\end{array} \overbrace{1}^{6} \frac{1}{100,000}
$$

Adding / subtracting decimals:
Make sure decimal points are lines up directly, then add or subtract

OR
Use a calculator

Multiplying by $10,100,1000$

X 10 move decimal point 1 place to the right

$$
2.58 \times 10=25.8
$$

X100 move decimal point 2 place to the right

$$
11.378 \times 100=1137.8
$$

X1000 move decimal point 3 places to the right
$2.179 \times 1000=2179$

Dividing by $10,100,1000$

$\div 10$ move decimal 1 pace to the left

$$
45.678 \div 10=4.5678
$$

$\div 100$ move decimal 2 places to the left

$$
234.6 \div 100=2.346
$$

$\div 1000$ move decimal 3 places to the left

$$
5678.9 \div 1000=5.6789
$$

Multiplying decimals

In the answer the number of digits after the decimal point will be EQUAL to the SUM of the number of digits in the 2 decimal to be multiplied

$$
\begin{aligned}
& 0.4 \times 0.02 \\
& 1 \text { place }+2 \text { places }
\end{aligned}
$$

Answer will have 3 places
$0.4 \times 0.02=0.008$ (3 places)

Rounding

Last digit 5 or more increase the previous digit
Last digit 4 or less leave digit as it is

Expressing fractions as a decimal

$\frac{3}{4}=0.75$
Divide the numerator by the denominator
$3 \div 4=0.75$
Using calculator change from a fraction to a decimal use the SHD button
$1^{\text {st }}$ year Maths Revision
Chapter 6: SETS

List of clearly defined objects is called a SET

Items in a set are called ELEMENTS
Elements are listed in chain or curly brackets \{\}
Capital letters are used to name sets
$\in \quad$ element is a member of a set
$\notin \quad$ Not an element of a set
\{ \}
curly brackets
slashed zero

Two sets are equal if they contain EXACTLY the same elements $\{A, B, C, D\}=\{D, C, B, A\}$

Subsets

$A=\{1,2,3,4,5\}$
$B=\{1,2\}$
B is a subset of A as every element of B is also an element of A

$$
B \subset A
$$

B is subset of A

Sets can be represented using diagrams called Venn diagrams

Intersection of two sets $A \cap B$ means the elements common to $B O T H$ sets

$A \cap B=\{1,3\}$

Union of sets $A \cup B$ means all the elements of A and B combined

Cardinal number

How many

cardinal number $=5$
$\{2,4,6,8,10\}$
cardinal number $=5$

Universal set (U)
Set from which all other sets are taken

Compliment of a set $\boldsymbol{A}^{\text {' }}$

Everything in the set EXCEPT A

Definitions:

Venn Diagrams

The $i \boldsymbol{\eta}_{\text {tersection is where two sets overlap. }}$
$A \cap B$
This means A and B .

If you put two sets together, you get the $\underline{\mathbf{U}}_{\text {nion }}$.
$A \cup B$
This means A or B. Think marriage, they become 1!

The complement of \mathbf{A} is the region that is not \mathbf{A}.
\% per cent (out of one hundred)
To change a fraction to a percentage:
Multiply the fraction by $\frac{100}{1}$

$$
\frac{3}{4} \times \frac{100}{1}=\frac{300}{4}=75 \%
$$

To change a decimal to a percentage:
Multiply the decimal by 100

$$
0.25 \times 100=25 \%
$$

To change a percentage to a decimal:

Divide the percentage by 100

$$
20 \%=\frac{20}{100}=\frac{1}{5}=0.2
$$

Finding percentages:

Change the percentage to a decimal and multiply
Find 8% of $€ 36$

$$
0.08 \times 36=€ 2.88
$$

OR use \% button on calculator

Important when comparing quantities that both quantities have the SAME UNITS

Example: Express 15 minutes as a percentage of 1.5 hours
Must put 1.5 hours into minutes so that the units are the SAME

$$
\begin{aligned}
& 1.5 \text { hours }=90 \text { minutes } \\
& \frac{15}{90} \times 100=16 \frac{2}{3} \%
\end{aligned}
$$

Increasing or decreasing a percentage:

Step 1: Add the \% to 100\% (INCREASE) or subtract the \% from 100\% (DECREASE)

Step 2: Change the resulting \% to a decimal
Step 3: Multiply the given number by the decimal

Example 1:

Increase 240 by 16%

Step 1: $16+100=116 \%$
Step 2: $116 \%=1.16$
Step 3: $240 \times 1.16=278.4$

Example 2:
Decrease 5000 by 4\%
Step 1: 100-4 = 96\%
Step2: $96 \%=0.96$
Step 3: $5000 \times 0.96=4800$

To find the original number when given a percentage of it:
Example:
If 12% of a number is 72 find the number
Step 1 : Find 1\%
$72 \div 12=6$

Step 2: Find 100\%
Take the 1% and multiply by 100
$6 \times 100=600$ the original number is 600

Discount:

If something is discounted it means the item has been reduced in price (sales in shops)
'20\% off' means you get a discount of 20% and you only pay 80% of the price

Example: A bicycle costs $€ 780$ before a 25% discount was applied.
Find the value of the bicycle after the discount was applied

Step 1: if the discount is 25% the sale price is 75% of the marked price

Find 75% of $€ 780$
$780 \times 0.75=€ 585$
Example: A woman paid $€ 200$ for a coat after a 20% discount was given. Find the price of the coat before the discount was applied.
$80 \%=200$ want to find 100%
Step 1: find 1% 200 $\div 80=2.50$
Step 2: find $100 \% 2.50 \times 100=€ 250$
Percentage discount:

$$
\frac{\text { Discount }}{\text { given price }} \times 100 \%
$$

Example:

A music shop offered a discount of $€ 4.80$ on DVD's with a marked price of $€ 24$. Calculate the percentage discount
$\frac{4.80}{24} \times 100 \%=20 \%$

VAT (value added tax):

VAT is a Tax that the government adds to items that you buy, the value of VAT can vary but you will be told in the question what VAT to use

In most cases the VAT is already added on or included in the price of items, but more expensive items like TV's \& furniture the prices are given without VAT and the shopkeeper must add on the VAT
*remember to take the price excluding VAT as 100\%

Example 1:

A computer was advertised at $€ 1140+$ VAT @ 23%. Find the price of the computer including VAT

Step 1: price before VAT €1140 (100\%)
Step 2 : price including VAT (123\%)---- find 123\% of €1140
$1140 \times 1.23=€ 1402.20$

Example 2:

An electricity bill is $€ 164.82$ including VAT at 23%
Calculate the amount of VAT
Step 1: €164.82 (includes VAT = 123\%)
Need to find price before VAT - 100\%
$€ 164.82 \div 1.23=€ 134$
Step 2 : calculate the amount of VAT--- subtract
$€ 164.82$ - €134 = €30.82 amount of VAT

Percentage profit and loss:

A profit is made when an item is sold for more than it cost to buy or produce it

If the selling price is lower than the cost price, a loss is made

$$
\frac{\text { profit }}{\text { cost price }} \times 100 \% \quad \frac{\text { loss }}{\text { cost price }} \times 100 \%
$$

Example:

A shopkeeper buys milk for $€ 1.40$ per litre. He sells milk for $€ 1.75$ per litre. Calculate his percentage profit

Step 1: calculate the profit

$$
1.75-1.40=0.35 c(\text { profit })
$$

Step 2: calculate \% profit $\frac{\text { profit }}{\text { cost price }} \times 100 \%$
$\frac{0.35}{1.40} \times 100 \%=25 \%$

Chapter 8: ALGEBRA

Algebra uses LETTERS or SYMBOLS to represent or stand for numbers

This is called an expression

To simplify expressions:

Add or subtract 'like terms' ---- terms that are the SAME

$$
\begin{array}{rr}
3 a+2-a+5 & 3 a-a \text { are like terms } \\
2+5 \text { are like terms }
\end{array}
$$

$$
=2 a+7
$$

Substitution:

To find a value for an expression replace or substitute (put in) a value for the unknown variable

$$
\text { If } x=2 \text { find the value of } 2 x+5
$$

Where you see x put in 2

$$
2(2)+5=9
$$

Removing brackets:

To multiply out the bracket EVERYTHING in the bracket must be multiplied by the number outside the bracket.

Then simplify by adding or subtracting terms that are the same

$$
3(a-2)-4(2 a-3)
$$

Step 1: multiply out brackets

$$
3 a-6-8 a+12
$$

Step 2 : add or subtract terms that are the SAME (remember your rules for integers!!!)

$$
\begin{gathered}
3 a-6-8 a+12 \\
=-5 a+6
\end{gathered}
$$

Multiplication involving powers:

$$
\begin{gathered}
a \times a=a^{2} \\
a \times a \times a=a^{3} \\
a \times a \times a \times a=a^{4} \\
a^{2} \times a^{4} \\
a \times a \quad a \times a \times a \times a \\
\text { (counting the } a^{\prime} s \text {) }=a^{6}
\end{gathered}
$$

When multiplying the same number to two powers ADD the powers

$$
\begin{aligned}
& 2^{4} \times 2^{5}=2^{4+5}=2^{9} \\
& 3^{4} \times 3^{3}=3^{4+3}=3^{7}
\end{aligned}
$$

Multiplying two expressions:

$$
(x+2)(x+3) \quad \text { Use BOX METHOD }
$$

Step 1: Draw the box

Step 2: put $1^{\text {st }}$ bracket on the TOP
Put $2^{\text {nd }}$ bracket on the SIDE

Step 3: multiply out

	C	+2
	x^{2}	$2 x$
+3	$3 x$	6

Step4: simplify (add terms that are the same)
$x^{2}+2 x+3 x+6=$
$x^{2}+5 x+6$

$1^{\text {st }}$ year Maths Revision

Chapter 9: PERIMETER \& AREA

Length is the straight-line distance between two points. Length is measured using a ruler or metre stick, trundle wheel.

The units of length are $\mathrm{mm}, \mathrm{cm}, \mathrm{m}, \mathrm{km}$

$$
\begin{aligned}
& 1 \mathrm{~cm}=10 \mathrm{~mm} \\
& 1 \mathrm{~m}=100 \mathrm{~cm} \\
& 1 \mathrm{~km}=1000 \mathrm{~m}
\end{aligned}
$$

Perimeter:

The perimeter of a shape is the distance around the edge of the shape

Perimeter of a rectangle:

$2(1+b)$ where $l=$ length $b=$ breadth (width)
Perimeter of a square: 4×1

perimeter

Where l is the length of a side

To calculate the perimeter of a square we add the lengths of each of the four sides. Because the sides of a square have identical lengths we can use the following formula:

Perimeter of a Square $=$ Length of One Side $\times 4$

Area:
Area is the amount of space covered by a shape.

The units of area are cm^{2}
Area of a rectangle:
breadth

```
                                    Area =Lx L N 
```

Example:

5 cm

Example

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \text { base } \times \text { perpendicular height } \\
& =\frac{1}{2} \times 11 \times 10=55 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of a square:
(length of side) ${ }^{2}$

Finding the length or breath when given the area:
Step 1: let the formula = area
Step2: fill in the information you know
Step3: find the unknown
Example:

Compound shapes:

Break the shape up into the various shapes
Find the area of each shape
Add the areas together

Points, lines \& line segments:

- A point A

This is the line $A B$, it passes through the points A and B

A line that starts at point A and finishes at point B is called the line segment $A B$

A line that starts at A and continues through B is called the ray $\llbracket A B$

Collinear points are in the same straight line

The flat surface on which points and lines are shown is called a plane

Angles:

a quarter of a revolution is called a right
Right Angle angle and it 90°

Straight Angle
half a revolution makes a straight angle of 1800

B

An angle that is less than 90° is called an ACUTE angle

An angle that is bigger than 90° but less than 180° is called an OBTUSE angle

Obtuse Angle

An angle that is bigger than 180° but less than 360° is called a REFLEX angle

Calculating angles;
Angles on a straight line all ADD up to 180°

$$
A+B+C=180^{\circ}
$$

Angles at a point ADD up to 360°

$$
A+B+C+D=360^{\circ}
$$

Vertically opposite angles

Vertically opposite angles are EQUAL

A protractor is used to DRAW angles

Parallel lines are lines that are horizontal lines that will never meet

Corresponding angles are EQUAL in measure

Alternate angles are EQUAL in measure
Interior angles

Interior angles add up to 180°

Using a set square and ruler students should be able to draw

1) A line parallel to a given line
2) A line perpendicular to a given line through a given point

See book pg 180 \& 181
Drawing parallel and perpendicular lines
$1^{\text {st }}$ Year Maths Revision
Chapter 11: Ratio \& Proportion
Ratio is used to compare one amount with another

Ratios

Simplifying a ratio ?

For example,

What is the ratio of red counters to blue counters?
red: blue

For every three red counters there is one blue counter.
When comparing more than two ratios it is important to make sure the quantities are expressed in the SAME UNITS

Eg. 2days:2weeks 2days:14days simplest form 1:7

Ratios

Simplifying a ratio ?

For a three-part ratio all three parts must be divided by the same number.

For example,

Dividing in a giving ratio

Step 1: add all the ratio to find the total number of parts
Step2: to find 1 part divide the amount by the total number of parts
Step 3: find the other amounts by mutiplying

Shared Ratio Amounts-Example 1

Divide 40 in the Ratio 2 : 3

For the Ratio $2: 3$, the Total Parts are $2+3=5$
Amount for One Part $=\frac{\text { Total Amount Shared }}{\text { Total Parts }}$

$$
\text { One Part }=40 / 5=8
$$

The " 2 " in 2:3 is 2 Parts $=2 \times$ One Part $=2 \times 8=16$
The " 3 " in 2:3 is 3 Parts $=3 \times$ One Part $=3 \times 8=24$

```
Addition Check for Answers = 40
```


EXAMPLE 2:

In a school the ratio of boys to girls is 6:5 (total parts 11)
If there are 325 girls find the number of pupils
$5 / 11$ are girls $=325$
Asked to find $11 / 11$ so work back and find $1 / 11$ first
$1 / 11=325 / 5=65$
$11 / 11=65 \times 11=715$ pupil in total

Proportion compares parts to a whole, proportion can be written as a fraction, decimal or percentage.

What is a direct

 an increase in one quantity corresponds to a constant increase in the other quantity, or if a decrease in one quantity corresponds to The lesser the the smaller the
number of items, amount to pay. number of items, amount to pay. a constant decrease in the other quantity.

Inverse proportion is where an increase in one quantity causes a decrease in another quantity.

Example: the faster a car is travelling the less time it will take to complete a journey (speed increases while length of journey decreases)

Information that is gathered is called DATA.
The branch of Maths that looks at collecting, presenting \& interpreting data is called STATISTICS.

A survey is a way of finding information from people, it involves asking questions, recording and collecting the data, presenting the data in way that is easy to understand.

Data is information that you or someone else collects
To collect data for a simple survey a tally can be used

tally			
Using tally marks to record counting.			
trafic frequency tally			
vehicle	frequency	vehicle	frequency
cars	HW III	cars	8
trucks	NH	trucks	5
vans	11	vans	2
utes	IIII	utes	2
buses		buses	4
bikes		bikes	0
I	II III	IIII	戌
1	23	4	5

Types of data:

Sampling:

Population: everything/everybody that could possibly be involved in the investigation/survey

Sample: data collected from some of the population from which conclusion are drawn.

Sample size: too small results may not be reliable, too big, it may take too long to collect and analyse.

Simple random sample: every member of the population has an equal chance of being chosen.

If data obtained is not truly representative of the whole population, the results may be biased.

QUESTIONNAIRES:

Are designed to obtain data.
Respondents are people that answer the questionnaires.
Designing a questionnaire

- Be clear about what you want to find out
- Keep questions simple
- Don't ask leading questions
- Provide response boxes
$1^{\text {st }}$ Year Maths Revision
Chapter 13: Coordinates

When drawing a grid or a graph, it is made up of two lines
The horizontal line is called the \times axis
The vertical line is called the y axis
A point is made up of 2 numbers $(8,7)$ the first number (8) is the x coordinate and the second (7) is the y coordinate

The point $(0,0)$ where the x and y axis meet is called the origin

The diagram above is divided into 4 quarters. Each is called a quadrant

The diagram is called the coordinated plane or cartesian plane

Midpoint of a line segment:

$1^{\text {st }}$ Year Maths Revision

Chapter 14: SOLVING EQUATIONS

Solving equations:
To solve an equation it is important to always remember what you do to one side you must also do to the other side, in order to keep both sides balanced
Solving Two-Step Equations

1. Add or subtract to isolate the variable term.
2. Multiply or divide to solve for the variable.
3. Check your solutions.
Example:

$3 x+5$	$=-16$
-5	-5
$3 x$	$=-21$
$\frac{3 x}{3}$	$=\frac{-21}{3}$
x	$=-7$
Divide	
$3(-7)+5$	$=-16$ Check

Equations with brackets:

You must remove the brackets first----- you do this by MULTIPLYING out the bracket

Then solve the equation

Forming simple equations:

X will always stand for an unknown number
2 bigger than x-------- ADD $2 x+2$
4 less than x-------- SUBTRACT $4 x-4$
Double the number ---- MULTIPLY by $2 x$
The result is ------- means equal to $=$

Five times x -------- MULTIPLY by 5 $5 x$
$1^{\text {st }}$ Year Maths Revision
Chapter 15: GEOMETRY 2

A triangle is made up of 3 sides and 3 angles

Angles in a triangle:

Angle Sum of a Triangle

The three angles in any triangle always add up to make a total of 180 degrees.
$60+60+60=180$
or $3 \times 60=180$

Isosceles

$$
\begin{gathered}
50+65+65=180 \\
\text { or } \\
2 \times 65+50=180
\end{gathered}
$$

Scalene
$40+120+20=180$

Right Triangle
$30+60+90=\mathbf{1 8 0}$

Finding Missing Angles

The three angles in any triangle always add up to make a total of 180 degrees.

Equilateral

The angles in an
Equilateral Triangle equal 60 degrees

$$
\begin{gathered}
60+60+60=180 \\
a=60^{\circ}
\end{gathered}
$$

Isosceles

$$
50+b+b=180
$$

$$
50+2 \times b=180
$$

$$
2 \times b=180-50
$$

$$
b=130 / 2
$$

$$
b=65^{\circ}
$$

Scalene

$$
40+120+d=180
$$

$$
160+d=180
$$

$$
d=180-160
$$

$$
\mathrm{d}=20^{\circ}
$$

Exterior angle of a triangle

You can classify triangles by their sides.		
Equilateral triangle Hos 3 sides that are the same length.	Isosceles triangle Hos at leost 2 sides that are the same length.	Hos no sides that are the same length.

Classifying Triangles by Angles

Acute Triangle

3 acute angles

> Right
> Triangle

1 right angle

Obtuse
Triangle

1 obtuse angle

Equiangular
Triangle Triangle

3 congruent angles
$1^{\text {st }}$ Year Maths Revision

Chapter 16: PRESENTING DATA

There are various different ways of presenting the data that you have collected.

Line plots:

Use dots or x's to represent the data on a scale. Line plots should have a title and labelled axis

Hours of Exercise

Bar charts:

Bars can be drawn vertically or horizontally and must be of the same width, and are separated by gaps of equal width.

Both axis must be labelled.

Stem and leaf plots:

These plots are made by splitting the numbers into tow parts. The STEM will represent the tens and the LEAF will represent the units. It is very important to always include a KEY to show how the stem and leaf combine.

The numbers should be placed in order of size
It is a good idea to do an unordered plot first and then rearrange the numbers in order of size, making sure the plots are labelled ordered and unordered

stem	leaf
0	$1,1,2,2,3,4,4,4,4,5,8$
1	$0,0,0,1,1,3,7,9$
2	$5,5,7,7,8,8,9,9$
3	$0,1,1,1,2,2,2,4,5$
4	$0,4,8,9$
5	$2,6,7,7,8$
6	3,6

Key: $6 \mid 3=63$ years old

